Microarchitecture Parameters Describe Bone Structure and Its Strength Better Than BMD

نویسندگان

  • Tomasz Topoliński
  • Adam Mazurkiewicz
  • Stanislaw Jung
  • Artur Cichański
  • Krzysztof Nowicki
چکیده

INTRODUCTION AND HYPOTHESIS Some papers have shown that bone mineral density (BMD) may not be accurate in predicting fracture risk. Recently microarchitecture parameters have been reported to give information on bone characteristics. The aim of this study was to find out if the values of volume, fractal dimension, and bone mineral density are correlated with bone strength. METHODS Forty-two human bone samples harvested during total hip replacement surgery were cut to cylindrical samples. The geometrical mesh of layers of bone mass obtained from microCT investigation and the volumes of each layer and fractal dimension were calculated. The finite element method was applied to calculate the compression force F causing ε = 0.8% strain. RESULTS There were stronger correlations for microarchitecture parameters with strength than those for bone mineral density. The values of determination coefficient R(2) for mean volume and force were 0.88 and 0.90 for mean fractal dimension and force, while for BMD and force the value was 0.53. The samples with bigger mean bone volume of layers and bigger mean fractal dimension of layers (more complex structure) presented higher strength. CONCLUSION The volumetric and fractal dimension parameters better describe bone structure and strength than BMD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of geometrical measurements in the assessment of vertebral strength

BACKGROUND The study was aimed at the development of parameters that could be used as predictors of vertebral strength. Proposed parameters describing vertebral geometry and/or shape can be established on the basis of routine spine roentgenograms, making roentgenography a novel tool for vertebral fracture risk assessment in the future. MATERIAL/METHODS 20 human cadaveric L3 vertebrae were inc...

متن کامل

Geodesic topological analysis of trabecular bone microarchitecture from high-spatial resolution magnetic resonance images.

In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, to...

متن کامل

Role of Trabecular Microarchitecture and Its Heterogeneity Parameters in the Mechanical Behavior of Ex Vivo Human L3 Vertebrae

Low bone mineral density (BMD) is a strong risk factor for vertebral fracture risk in osteoporosis. However, many fractures occur in people with moderately decreased or normal BMD. Our aim was to assess the contributions of trabecular microarchitecture and its heterogeneity to the mechanical behavior of human lumbar vertebrae. Twenty-one human L(3) vertebrae were analyzed for BMD by dual-energy...

متن کامل

Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta.

In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA),...

متن کامل

The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.

Bone mineral density (BMD) and bone microarchitecture are important determinants for the mechanical properties of cancellous bone. Although BMD alone is a good predictor of average mechanical properties of cancellous bone, there remains unexplained variation in mechanical properties that might be due to missing information regarding bone microarchitecture. Recent developments in three-dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012